Evaluating English to Arabic Machine Translation Using BLEU
نویسندگان
چکیده
This study aims to compare the effectiveness of two popular machine translation systems (Google Translate and Babylon machine translation system) used to translate English sentences into Arabic relative to the effectiveness of English to Arabic human translation. There are many automatic methods used to evaluate different machine translators, one of these methods; Bilingual Evaluation Understudy (BLEU) method, which was adopted and implemented to achieve the main goal of this study. BLEU method is based on the assumptions of automated measures that depend on matching machine translators' output to human reference translations; the higher the score, the closer the translation to the human translation will be. Well known English sayings in addition to manually collected sentences from different Internet web sites were used for evaluation purposes. The results of this study have showed that Google machine translation system is better than Babylon machine translation system in terms of precision of translation from English to Arabic. Keywords— component; Machine Translation; Arabic; Google Translator; Babylon Translator; BLEU
منابع مشابه
Improving Arabic-Chinese Statistical Machine Translation using English as Pivot Language
We present a comparison of two approaches for Arabic-Chinese machine translation using English as a pivot language: sentence pivoting and phrase-table pivoting. Our results show that using English as a pivot in either approach outperforms direct translation from Arabic to Chinese. Our best result is the phrase-pivot system which scores higher than direct translation by 1.1 BLEU points. An error...
متن کاملHandling OOV Words in Dialectal Arabic to English Machine Translation
Dialects and standard forms of a language typically share a set of cognates that could bear the same meaning in both varieties or only be shared homographs but serve as faux amis. Moreover, there are words that are used exclusively in the dialect or the standard variety. Both phenomena, faux amis and exclusive vocabulary, are considered out of vocabulary (OOV) phenomena. In this paper, we prese...
متن کاملUnsupervised Word Segmentation Improves Dialectal Arabic to English Machine Translation
We demonstrate the feasibility of using unsupervised morphological segmentation for dialects of Arabic, which are poor in linguistics resources. Our experiments using a Qatari Arabic to English machine translation system show that unsupervised segmentation helps to improve the translation quality as compared to using no segmentation or to using ATB segmentation, which was especially designed fo...
متن کاملLarge and Diverse Language Models for Statistical Machine Translation
This paper presents methods to combine large language models trained from diverse text sources and applies them to a state-ofart French–English and Arabic–English machine translation system. We show gains of over 2 BLEU points over a strong baseline by using continuous space language models in re-ranking.
متن کاملBuilding an English-iraqi Arabic machine translation system for spoken utterances with limited resources
This paper presents an English-Iraqi Arabic speech-to-speech statistical machine translation system using limited resources. In it, we explore the constraints involved, how we endeavored to mitigate such problems as a non-standard orthography and a highly inflected grammar, and discuss leveraging existing plentiful resources for Modern Standard Arabic to assist in this task. These combined tech...
متن کامل